Mixing Hierarchical Contexts for Object Recognition

نویسندگان

  • Billy Peralta
  • Alvaro Soto
چکیده

Robust category-level object recognition is currently a major goal for the Computer Vision community. Intra-class and pose variations, as well as, background clutter and partial occlusions are some of the main difficulties to achieve this goal. Contextual information in the form of object co-ocurrences and spatial contraints has been successfully applied to reduce the inherent uncertainty of the visual world. Recently, Choi et al. [5] propose the use of a tree-structured graphical model to capture contextual relations among objects. Under this model there is only one possible fixed contextual relation among subsets of objects. In this work we extent Choi et al. approach by using a mixture model to consider the case that contextual relations among objects depend on scene type. Our experiments highlight the advantages of our proposal, showing that the adaptive specialization of contextual relations improves object recognition and object detection performances.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data

Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...

متن کامل

Visual Context-based Scene Interpretation in Indoor Environment

⎯ In this paper, we propose a novel scene interpretation paradigm by unified modeling of visual context using hierarchical graphical model. Scene interpretation through object recognition is difficult due to several sources of ambiguities (blur, clutter). We model the visual context of scene, object, and part into our problem to disambiguate them during object recognition. The precisely designe...

متن کامل

Scene Interpretation: Unified Modeling of Visual Context by Particle-Based Belief Propagation in Hierarchical Graphical Model

In this paper, we present a novel scene interpretation method by unified modeling of visual context using a hierarchical graphical model. Scene interpretation through object recognition is difficult due to several sources of ambiguity (blur, clutter). We model the visual context of scene, object, and part to disambiguate them during recognition. A precisely designed hierarchical graphical model...

متن کامل

Finding Pictures of Objects in Large Collections of Images

Retrieving images from very large collections, using image content as a key, is becoming an important problem. Users prefer to ask for pictures using notions of content that are strongly oriented to the presence of abstractly de ned objects. Computer programs that implement these queries automatically are desirable, but are hard to build because conventional object recognition techniques from c...

متن کامل

Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors

In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011